复微分方程

孙天阳

2021年8月5日

目录

	目录	É	1	
1 -	一般	-般理论		
	1.1	Cauchy 基本定理	2	
	1.2	Monodromy 表示	3	

Chapter 1

一般理论

1.1 Cauchy 基本定理

考虑 ℂ 上的二阶复线性常微分方程

$$\frac{\mathrm{d}^2 u}{\mathrm{d}z^2} + p(z)\frac{\mathrm{d}u}{\mathrm{d}z} + q(z)u = 0, \quad z \in \mathbb{C}$$
(1.1)

其中 p,q 是有理函数.

定义 1.1.1. 称 $z_0 \in \mathbb{C}$ 是方程(1.1)的奇点如果 z_0 是 p 或 q 的极点.

为了定义什么叫 ∞ 是方程(1.1)的奇点, 我们做坐标变换 $w=\frac{1}{z}$, 有

$$\frac{\mathrm{d}u}{\mathrm{d}z} = \frac{\mathrm{d}w}{\mathrm{d}z}\frac{\mathrm{d}u}{\mathrm{d}w} = -\frac{1}{z^2}\frac{\mathrm{d}u}{\mathrm{d}w} = -w^2\frac{\mathrm{d}u}{\mathrm{d}w},$$

$$\frac{\mathrm{d}^2 u}{\mathrm{d}z^2} = -w^2 \frac{\mathrm{d}}{\mathrm{d}w} \left(-w^2 \frac{\mathrm{d}u}{\mathrm{d}w} \right) = w^4 \frac{\mathrm{d}^2 u}{\mathrm{d}w^2} + 2w^3 \frac{\mathrm{d}u}{\mathrm{d}w}$$

代入方程(1.1)得

$$\frac{\mathrm{d}^2 u}{\mathrm{d}w^2} + \left\{ \frac{2}{w} - \frac{1}{w^2} p\left(\frac{1}{w}\right) \right\} \frac{\mathrm{d}u}{\mathrm{d}w} + \frac{1}{w^4} q\left(\frac{1}{w}\right) u = 0. \tag{1.2}$$

定义 1.1.2. 称 ∞ 是方程(1.1)的奇点如果 z=0 是方程(1.2)的奇点.

1.2 Monodromy 表示